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The objective of this section is to build the foundations of the construction of the hy-
pernatural numbers. This will be accomplished in a generalized setting: letting X be
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2A Constructive Path to the Hyperreal Numbers from Sequences of Naturals (Draft 17)

an algebraic structure defined on the set X, the goal is to construct the hyper-structure
*X which preserves the key operational, existential, and relational properties of X while
including unlimited values. As an intermediate extension of X, we will first develop a
structure on the set

X'={f | f:1-X)

as a generalization of the ordered pairs and sequences used in the standard construction
of the integers, rationals, and reals. Since it will often be useful to specify these functions
directly from images, the notations (f(i));er and (f;);je1 will often be used. Further, for
the sake of simplicity when the context permits, the index will be omitted with the
understanding that i € I.

Any operation defined on X is naturally extended to X'. In general, given the operation
% on X, x! on X! is given by

(f x' @)(i) = f(i) * g(D)

for any f, g € X' and all i € I. The operational and existential properties on X! are readily
verified and are thus left to the reader. It is far more labourious to extend relations on X
toX!. In particular, since the key case we are interested in is when X = (N, +,-), we will
need to extend equivalence and ordering relations from X to X!. Further paralleling the
standard constructions of the naturals, integers, and reals, *X is defined as X'/E!, where
E! the extension of the equivalence relation E on X. Now with this described, stating the
objectives of this construction can be made more rigourous.

1. *X extends X.

(a) Any key operational (associative, commutative, distributive), existential (iden-
tities, inverses), or relational (total ordering compatible with operations)
properties true in X are also true in *X

(b) X is isomorphic to a subset of *X. Equivalently, there exists an injective
homomorphism ¢ : X — *X.

2. There exists a nonstandard element in *X. That is, there exists a € *X such that
o # ¢(x) for all x e X.

3. One of these nonstandard elements is unlimited (greater than all ¢:(x) for x € X) or
infinitesimal (less than all ¢ (x) for positive x € X).

Given a relation R on X, the extended relation *R will be based on the indices in I for
which R holds. As such, it is convenient to introduce the following notation.

Definition 3.1. Given f,g € xt

[fRg] ={iel: fiRg:
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Definition 3.2. Given & < (1), a relation R on X is extended to a relation *R on X! as
follows:

f'Rg = [fRgleF
for f,g e X\

With this, many properties of *R and thereby of *X are direct results of properties of
the set . For example, if # = 22(I) then *X would only consist of a single equivalence
class since any two f, g € X! would be equivalent. To identity which properties % must
have so that *X is the desired construction, we shall pursue the proofs for extending
equivalence and ordering relations. Let E be an equivalence relation on X. Then,

1. Reflexive. For f*Ef, it must be that [fEf] =1€ &.

2. Symmetric. f*Eg < [fEg] € ¥ < [gEf] € & < g*Ef is already true for
&, so nothing more is required.

3. Transitive. Suppose f*Eg and g*Eh so that [ fEg] € & and [gEh] € &. Observe
then that

[fER] 2 [fEg] n[gEA]
This is true if & is closed under pairs of intersections and supersets.
Additionally, as mentioned previously, if F = 22(I) then *E would trivially extend X.

As such, we also require that F # 22(I). With this, the following structure on & is imposed
so that equivalence relations are nontrivially extended.

Definition 3.3. The nonempty family & < 22(]) is a filter if it has the
1. Superset property. VA€ %, VBS[,ACB — Be %
2. Intersection property. VA,Be #,AnBe %

As required, I is also always in & since | is a superset of any element in 5. Addition-
ally, observe that @ ¢ &, as otherwise & = Z(I) by the superset property. Lastly, note
that by induction, the intersection property is equivalent to any finite intersection of
sets from the filter is also being in the filter.

Further, consider what properties % must have for *T to be a total ordering if T is.

1. Reflexive, Transitive. Same proofs as for equivalence relations, so & being a filter
satisfies these.

2. Antisymmetric. Suppose that f*Tg and g*Tf so that [ fTg],[gTf] e . f F isa
filter then

[fTgln[gTf]=[fEg]leZF
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3. Total. Assume that f=*Tg so that [fTg] ¢ &. Then,

N[fTg]=[gTfIn\[fEg]) <[gTf]

Therefore, if it were the case that [fTg] ¢ & = I\[fTg] € &, then *T would be
total.

Since 7 is a filter, only this final property must be imposed to ensure that *T is a total
ordering.

Definition 3.4. If % is a filter, it is said to be an ultrafilter if for all A €1, either A € & or
I\Ae &.

Note that exclusively either A or I\ Ais in %, since AN (I\A) = @ cannot be an element
of any filter. To summarize, if & is an ultrafilter and if E and T are an equivalence and
ordering relation on X respectively, then *E and *T are an equivalence and ordering
relation on *X respectively.

However, recalling the two objectives of the construction of *X, it becomes clear that
not all ultrafilters will satisfy these goals. In particular, ultrafilters containing a singleton
cannot be used to sufficiently extend X. Such an ultrafilter would imply that any two
functions are equivalent only if the elements in their ith terms are equal. As the reader
can verify in further detail, this would imply that X = *X. Since % is an ultrafilter, this is
equivalent to requiring that & contains no finite sets. To see this, let A = {a;,..., a,} € &.
Then, it must be that {a;} € & for some 1 < k < n since otherwise I\ {a;} € & so thus

I\ {ak} =1\ (J{ax}
k=1 k=1

=I\A
= An(I\A)=¢eZF

This motivates the following definition.

Definition 3.5. Let & be an ultrafilter. & is said to be nonprincipal if for every A € &
implies that A is infinite.

With the numerous restrictions now imposed on %, it is not at all obvious that such
a set can exist. To demonstrate that a nonprincipal ultrafilter does exist on an arbitrary
unlimited set I, first consider the generation of filters.

Definition 3.6. Let A4 < 22(I). / is said to have the finite intersection property (or fip)
ifforanyneNandBy,...,B,€ #£,B1n---NB, # @
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Definition 3.7. Let /# < 22(I) have the finite intersection property. Then, the filter
generated by /2 is

F = fAcl:A2B;n---nB, forany neN,By,...,B, € &}
and is also the smallest filter containing /.

To prove that & 7 is the smallest filter containing ./, it suffices to show that & H
is a filter that contains /2 and if & is any filter that contains / then & # < . Indeed,
F7 is a filter since

1. Superset property. For any B 2 A where A € 7, A is the superset of a finite
intersection of sets from ./, so thus B is as well and so Be F*.

2. Intersection property. For A,B € F* ADAIN--- NA,and B2B;n---nB,, for
some Ay,...,A;,B1,...,B; € #. Therefore, ANB2A;N---NnA;,NB;N---NBy, so
thusAnBe 7.

3. And ¢ ¢ 7 since it would only occur when there is some empty finite intersection
of A, which is avoided by the assumption of the finite intersection property.

Further, # < 7 since every H € ./ is a superset of itself. Lastly, if & is a filter where
JC € & then any superset of any finite intersection of sets from . is also included in &%,
so F7 < . This verifies that 7 is the smallest filter that contains /.

Filter generation provides a useful tool for extending filters. Given a filter & and a set
A c1, it is not generally true that & U {A} is a filter. However, 7“4 is the smallest filter
containing both % and A. With the ability to create larger filters, the following alternative
definition of an ultrafilter is a key tool in the construction of a nonprincipal ultrafilter.

Theorem 3.8. % is an ultrafilter if and only if it is a maximal filter.

Proof. Let & be an ultrafilter, and suppose ¥ is another filter larger than . There
cannot be any A € ¢\ &, since that would imply that I\Ae€ & andso An(I\A) =g €Y.

Suppose that & is not an ultrafilter. Then, there exists some A < I such that neither A
nor I\ Aisin &%. As such, it follows that for all Be &, AnB # @. Otherwise, if there was
some Be % suchthat AnB=¢,thenB<I\A — I\ A€ %. Therefore, & U {A} is a set
with the finite intersection property so 7Y% is a filter larger than .%. O

This now enables the proof of

Theorem 3.9. Any set with the finite intersection property, ./, can be extended to an
ultrafilter, denoted & z.

Rose-Hulman Undergrad. Math. J. Volume oo, Issue 7, 2112



6A Constructive Path to the Hyperreal Numbers from Sequences of Naturals (Draft 17)

Proof. Let 2 be the set of all filters including .. 9 is partially ordered by the subset
relation. Zorn’s lemma will be applied to show that & has a maximal element, i.e., an
ultrafilter containing /.

Let € < 2 be a chain. It must be shown that € has an upper bound in 2. Define

Fe= 9
Ge€

Then, ¢ is a filter by the following arguments:

1. If A,B € ¢, then there are some ¥a,%g € € that contain A and B. Without loss
of generality, assume that 4, < ¥g. It follows that A € 4 so AnB € ¥ and so
ANBe .

2. If A€ %4 then there must be a4 € € such that A€ 4. If Ac B then B € ¢4 so that
Be ¢

3. @ ¢ F¢, otherwise there must be some ¥ € ¥ for which @ € ¢, which is never the
case.

Since ./ is a subset of every element of €, it follows that A < ¢, and thus %4 € 9.
Further, every element of € is contained in %« so thus % is an upper bound of the
chain.

Therefore, since every chain in 2 has an upper bound in 2 and Zorn’s lemma can be
applied so that 2 has a maximum element. By Theorem 1.XX, this maximum element is
an ultrafilter which contains . O

Though this theorem is a powerful tool for creating ultrafilters, it makes no guarantee
about them being nonprincipal. Consider / = {i} for some i € . Evidently, # has the
finite intersection property, but % contains this singleton so is principal. Fortunately, it
is possible to impose the following restrictions on / to ensure that % » is nonprincipal.

Lemma 3.1. Let A4 < (1) have the finite intersection property. If e #H = @ then & z
is nonprincipal.

Proof. Proof by contrapositive. Suppose that % s is principal so that it includes a sin-
gleton {i} for some i € I. By the superset property, it follows that i € A for all A € F 4.
Namely, since /£ < Z », i € H for all H € #. Thus, the intersection of all sets in # is
nonempty. O

If the intersection of a finite number of sets in ./ is nonempty while the intersection
of every set in 4 is empty, it follows that # must be infinite. Therefore, to demonstrate
that a nonprincipal ultrafilter exists, it suffices to show that such a ./ can be constructed.
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Lemma 3.2. Let A4 < 22 (1) where(ue# H is infinite. Deﬁne% =AU~ where
S~ ={I\{i} | VHe A,i € H}
Then #€ has the finite intersection property and NyezzH = 2.

Proof. By Lemma 3.XX, it suffices to show that . has the finite intersection property
and that the intersection of all of its members is empty.

For the finite intersection property, since # = # U 4, it suffices to show that
a finite number of sets from # intersected with a finite number of sets from #~ is
nonempty. Observe that Nye # H is a subset of any finite intersection from /7, so the
problem is once more reduced to demonstrating that (g 7 H intersected with a finite
number of sets from ./~ is nonempty.

Indeed, let By,...,B, € A for some n € N. By definition, By =1\ {i}} forall 1 < k < n,
where i € Nyez H. Thus,

Bin---nB,=0\{i1Dn---nA\{i,) =1\ {i1,...,i,}
Therefore,

N HABin---nBy) = () HAU\{it,..., i) = [ H\ (i1, ..., in}
He# He# He#
S_ince MNue H is infinite and {iy, ..., i,} is finite, Nge»H\ {i1, ..., ,} is nonempty. Thus,
7€ has the finite intersection property. . L
Similarly, the intersection of all elements in / is empty. Since A = AU A", it

follows that
(JH=()Kn [ L
He# Kest LesC~

So that any i € ;.7 H must also be in every K € . This implies that I\ {i} € #~ and
so [\ {i}e Ny z7H It follows that this intersection is empty. O

All that now remains to guarantee the existence of a nonprincipal ultrafilter is to find
a family of sets which has an infinite intersection, which is a simple task.

Corollary 3.3. There exists a nonprincipal ultrafilter on any infinite set 1.

Proof. Let # = {I}. Then, the intersection of all elements in # is evidently I, which is
infinite. By Lemma.XX,  has the finite intersection property and an empty intersection
of all of its elements. Thus, by Lemma.XX, gﬁ is a nonprincipal ultrafilter. O

To summarize, an ultrafilter was required to extend equivalence and ordering rela-
tions from X to *X, and a nonprincipal ultrafilter was required to avoid the case when %
contains a singleton which guarantees that *X = X. However, the two objectives outlined
at the beginning of this section still must be demonstrated. First, we must complete the
extension of the operations on X to *X.
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Definition 3.10. For f, g € X!, any extended operation was defined as
(f ' @) = f(i) x g (i)
This operation is naturally extended to *X = X!/*E

[f1*gl=1f*'g]

for [f1,[g] € *X.
Lemma 3.4. *! and *T are well-defined with respect to *E.
Proof. Let f,f',g,& € X! so that f*Ef’ and g*Eg’. It follows that [fEf'] € & and
[gEg'] € &. Since f()Ef'(i) and g(i)Eg' (i) imply that f (i) x g(DEf' (i) x g'(i),

[fEfIn[gEgN<f ' gEf x gl e F
So thus f *' g*Ef’ x g’ Next, assume f*Tg so that [ fTg] € &. Similarly, since f(i)Ef’ (i),
g()Eg'(i), and f(i)Tg(i) imply that f'(i)Tg'(i),

[fEfTnIgEE TN fTel<[f"TgTe#

Therefore, f'Tg’.
As such, any binary operation on X' and extended ordering on X! are well-defined. [

With the operation and ordering now established on *X, we can prove that *X meets
the two objectives outlined at the beginning of this section.

Theorem 3.11. Any key operational (associative, commutative, distributive), existential
(identities, inverses), or relational (total ordering compatible with operations) properties
true in X are also true in *X

Proof. Let [f],[g],[h] €*X
1. Associative. Assume that x is associative in X. Then,
[f] * ([g] * [h]) = [f] * [g *" h]
=[f*' (g* )]
=[(f+'g) x"h

=[fx gl x[h]
= ([f1* [g]) * [h]
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2. Commutative. Similarly, assume that x is commutative in X. It follows that

[f1* (gl =[f*'g]
=[g*'f]
= [g] * [f]

3. Distributive. Assume that  is another operation on X that distributes over *. Only
the case for left-distributivity will be shown here.

[f]e((g] % [A]) = [f] e [g*" ]
=[f o' (gx" W]
=[(fe' g *' (f ' )]
=[felglx(fe'hl
=[flelgl*[f]e[h]

4. Existence of identity. Let e € X be the identity with respect to x. Then, [(e);¢1] is
the identity of *X since

[f]* [(e)ierl = [f * (€)e1]
=[(f(i) x &) el
= [(f (D)) e
= [f]

5. Existence of inverse. For any x € X, let the inverse with respect to * of x be x~ L.
Then, the inverse of [ f]is [(f(i)!);e1] since

[F1x FD) D ierl = I+ (@) el
= [(f @) * f() el
= [(e)e1]

which is the identity of *X with respect to *.

6. Operations are compatible with ordering. Suppose that [f]T[g]. Then,
[fITIg] = [f*'TgleZF
= [fxh"Tgxh]eF
< [f*h]T[gx h]
< [f1x[Rh]T[g] * [A]

Rose-Hulman Undergrad. Math. J. Volume oo, Issue m, 2112
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O
Theorem 3.12. The map ¢ : X — *X given by ¢ (x) = [(x)] is an injective homomorphism.

Proof. Let x,yeX.

Ox* y) = Kx * V)iell
= [(xYier %' (Y)iel]
= (X ierl X (W) iell
= G(x) * G(y)

Therefore, ¢ is a homomorphism.
Further, assume that ¢(x) = ¢(y). Then,

b)) =0(y) = [)iell = (il
= (x)="(y)
— {iel|lx=y}eZF

= x=y
Thus, ¢ is injective. O

Next, consider the requirements for *X to contain an unlimited value. Note that X
must have no maximum element. Otherwise, the image of that maximum element under
¢ would be greater than or equal to every other element in *X.

Theorem 3.13. Let X have no maximum element. There exists a nonprincipal ultrafilter
so that *X has an unlimited value if and only if there exists a set Y < X such that Y is
unbounded in X and [Y| < |1].

Proof. = . Let w be an unlimited value. o is in the form [f], where f € XL Let
Y ={f(i) | i €I} be the image of f. Note then that for any x € X, it follows that ¢(x) < w,
so that there exists i € I such that x < f(i). Therefore, for any x € X there exists an f(i) € Y
such that x < f(i). Thus, Y € X is unbounded in X. Further, since f is surjective to Y,
Y[ < [1].

<=. Let Y < X be unbounded where |Y| < |I|. It follows that there exists a surjective
function f:1—Y. Since Y is unbounded, for every x € X there exists a y € Y such that
x < y. Equivalently, there exists an i € [ such that x < f(i). With this, each of the sets

Gy={iellx< f(i)}
is nonempty. Observe that if x; < x» then G, € Gy,. Then, let

JC={Gx | x €X}
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Observe that Nyex Gx = @ since forany i €1, i ¢ Gy(;) because f (i) £ f(i). Additionally,
7€ has the finite intersection property: let Gy, ..., Gy, € # for some n € N where x; <
-++ < Xyp. Then,

SO
Gy, N+--NGy, =Gy # &

Therefore, by Lemma 3.XX, & # is a nonprincipal ultrafilter. Since % 7 contains /7, it
follows that [f] is an unlimited value. For any x € X,

O <[fl = [(0y< fleZF
— {iel|lx<f()leF
— GyeF
Thus, [f] is an unlimited value. O

Corollary 3.5. When X =N and 1 =N, every nonprincipal ultrafilter yields unlimited
values.

Proof. Let &% be a nonprincipal ultrafilter on N. Observe that N\ G, is a finite set for any
n € N. Therefore, N\ G,, ¢ & and so N\ (N\G,,) =G, € &. O

Remark 3.6. The superscripts o' and *o will be omitted on operations and relations in
the next sections.

4 Construction

4.1 Hypernaturals

Nearly everything needed to construct the hypernatural numbers has already been
completed in the previous section. The first portion of this section will be dedicated to
reviewing each relevant definition in the specific case of X =1 =N. Beginning with the
semiring (N, +, -) of the natural numbers, the extension to (*N, +,) is made as follows.

Definition 4.1. Let % be any nonprincipal ultrafilter on N and let NV be the set of all
sequences of natural numbers. Then, define *N = NN/ =, where for any a,b € NN

a=bh < [a=b]eF
And similarly,
asb < [as<b]eZF
Further, the operations + and - are extended to NN and *N with
Kaw) ]+ [{bp)] = [{an + bp)]
Kam] - [{bp)] = [{ay - b))
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It follows that these extended operations and relations are well-defined and form the
ordered semiring (*N, +, -) with additive identity [(0)] and multiplicative identity [(1)].

As proved more abstractly, ¢(n) = [(n)] is an injective homomorphism from N to *N.
Additionally, any unbounded subset of N yields an unlimited hypernatural number. For
example, w = [(1,2,3,...)] is unlimited since for any m € N,

d(m)<w <= (m)<(1,2,3,...)
— {neN|m<nle&F
— GpeF

which is true since G, is cofinite.

Remark 4.1. In later sections, to avoid cumbersome notation as context permits, n will
be understood to mean ¢(n) for any n € N.

Now, there are many interesting properties of the hypernatural numbers not readily
visible in as abstract a setting as the last section. As in the naturals, any open interval
where each endpoint is a finite distance apart has a finite cardinality. More specifically,

Theorem 4.2. Let a € *N and let n € N. Then, |(a,a+d(m +1))| = m.

Proof. Proof by induction. Let a € *N. In the base case of m = 0, it must be shown that
there exist no hypernatural numbers f such that a < < a + ¢(1). By definition,

[a<pln[p<a+dM)] =@ ¢F

Thus, |(o, a+ (1)) =0=m.
For the induction step, assume that |(a, o + ¢ (m + 1))| = m. It follows that

(o, +P(m+2))|=](a,a+d(m+ 1) Ufa+d(m+1U(a+d(m+1),a+d(m+1)+d(1))]
=[x+ P(m+ 1)+ {a+d(m+ D} + |[(a+d(m+1),a+d(m+ 1)+ d(1))]
=m+1+0

as desired. O
Corollary 4.2. Ifa e *N is finite, then a = $(n) for somen € N.

Proof. Assume that o # $(0). Since a is finite, there exists a k € N such that a < ¢(k+1).
As such, a € (¢(0), d(k +1)). It follows that [($(0), d(k + 1))| = k. Observe, however, that
forallne (0,k+1), d(n) € ($(0),(k +1)). There are k different n, so thus o = ¢(n) for
one of these n. O

With this, the hypernatural numbers can split into sets of unlimited and finite values.
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Definition 4.3. Let *Nj = ¢(N) be the set of all appreciable (or finite) hypernatural
numbers. Let *Ny = *N\ *Nj be the set of all unlimited hypernaturals.

It follows that N = *N since ¢ is surjective to its image and so is an isomorphism.

The appreciable and unlimited hypernatural numbers are closed under + and -.
Evidently, if a, f € *Ny, then a < a+f and a < a3, so thus a + 3, - € *Ny. Additionally,
if o, p € *Ny, then a = ¢p(n) and f = ¢p(m) for some n, m € N. Thus, a+p = d(n+m) € *Ny
and o-p =d(n-m)e *Na.

In the naturals, if n > m, then there exists a k such that n = m+ k. This fact is similarly
true for the hypernaturals.

Lemma4.3. Leta,P € *N. Ifa > P, then there exists ay € *N such thata =p +.

Proof. If a =p, then y = ¢(0). Without loss of generality, assume that a > 3. Then,
a>p < {neN|a,>p,leF

Whenever a,, > 3, then there exists a ¢, € N such that o, = f, + ¢,,. Then, define v, = ¢,
whenever a, > f3,, and y, = 0 otherwise, it follows thata =3 +y. O

A property which the hypernatural numbers do not share with the naturals is the
least upper bound. That is, there exists a bounded subset of *N for which there is no
minimum upper bound. In particular,

Lemma 4.4. *Ny has no least upper bound.

Proof. Evidently, a hypernatural number is an upper bound of *Nj, if and only if it is
unlimited. As such, let a € *Ny. It follows by Lemma 4.XX that since a > ¢ (1), there
exists a f € *N such that o = + ¢(1). It cannot be that 3 is an appreciable hypernatural
number, otherwise a would also be since the appreciables are closed under addition.
Thus, B is an unlimited value less than a. Since a was an arbitrary upper bound of *Njy,
it follows that *N has no least upper bound. O

To further distinguish the hypernaturals, they contain uncountable bounded open
intervals, whereas the naturals only contain finite bounded open intervals.

Theorem 4.4. Let o, € *N such that a < p and where § # a + ¢(n) for all n € N. Then,
(o, B)] = 2.

Proof. Since p > «, there exists a y € *N such that p = a + y. Since p # a + ¢(n) for any
n €N, it follows that y is an unlimited hypernatural number. Let w: (0,1) SR — (o, )
be defined by y(x) = [{a,, + lxY,])]. It suffices to prove that w(x) is always contained in
(a, B) and that v is injective.
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First, let x € (0,1). Then,
a<yx)<P < neNl|a,<ap+lxy,lleFA{neN|a,+|xy,l <PulleF

Which is true since [xy,] >0and |xy,] <y, forall xe (0,1) and n e N.
Next, suppose that for x, y € (0,1), x # y. Without loss of generality, assume that x < y
and write y = x + d. Observe then that

V(X)) <w(y) <= wx)<wyx+d)
> {neN|a,+ |xypl <op+l(x+d)ynlleF
< {neN| |xy,l <|xyp,+dyulleZF

Which is true whenever dy, = 1. By the Archimedean property, there exists N € N
such that N = é. Then, since y is unlimited, it follows that {n e N | y, > N} € &#. Thus,
W (x) < Y(y) so that w(x) # y(y). Therefore,  is injective.

Since |(0,1)| = 2%, it follows that | (a, )| = 2% O

To conclude this section, one interesting pursuit is the creation of a "hyperhyper-
natural" number system. By design, (*N, +,-) is itself an ordered semiring. Therefore,
it is possible to apply the constructions in Section 3 once more to create another new
number system.

Just as the hypernatural numbers contain values which are unlimited in respect to
the naturals, any "hyperhypernatural” structure should have values that are unlimited
in respect to the hypernaturals. For this to be true, there must exist an unbounded
subset of cardinality less than or equal to that of the indexing set. Thus, the path towards
constructing the "hyperhypernaturals”" begins by attempting to identify a nontrivial
unbounded subset of *N.

Theorem 4.5. If B < *N is unbounded, then |B| = 2%,

Proof. Proof by contradiction. Suppose that B is a countable unbounded subset of *N.
Write B as {[s'], [s?],...}, where s!, s2,... € NN, It suffices to create a sequence larger than
each of the s”. Let S € N™ where i
Sp=) sk
k=1

Then, for any m € N, s < S since for all n = m,

m—1 n
S=st+ Y skt Y sk>gm
k=1 k=m+1
Therefore, [S] is an element of *N that is greater than every element of B. If [S] is larger
than every element in B we are done. Otherwise, if [S] is equal to some element of B,
then it must be the maximal element. As such, [S]+ ¢(1) is larger than every element of
B. Since B was arbitrary, it follows that no countable unbounded subset of *N exists.
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S1 Sy S3 Sy S5

1 2 3 4 5
S1 $1 1 §y $] RN
+ + + +

1 2 3 4 5

2 S, S5 S, Sy S5
+ + +

1 2 3 4 5

$3 S3 3 3 S3 3

+

Sa S S S S s>
4 4 4 4 4

+

1 2 3 4 5
S5 S5 S5 S5 S5 S5

O

Since |I| = |B| for any extension that contains unlimited values, it follows that the
"hyperhypernatural” numbers cannot be created using sequences of natural numbers.
The most obvious choice, then, is choosing *N itself as the indexing set.

4.2 Hyperintegers
4.3 Hyperrationals
4.4 Hyperreals

5 Calculus

6 Cardinality

By Lemma 3.XX, the cardinality of the hypernaturals is greater than or equal to the reals.
Additionally, since an injective function exists between the sets *N, *Z, *Q, and *R,

2V <I*'NI<*ZI<|"QI < 'R
Since *R = *QV/ ~, it follows that | *R| < |*Q"|. Thus,
2% < |*R| < (2%
Which, by cardinal arithmetic([1],
280 < |*R| < (280)R0 = 200 — o%o

Therefore, |R| = |*N| = [*Z| = |*Q| = |*R]
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7 Discussion
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